Part Number Hot Search : 
2800A 15N06 TEA6845H 50005 74LV1G PC150 B3843 PB634012
Product Description
Full Text Search
 

To Download SLA7020 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Unipolar Driver ICs
SLA7020M WITH MOSFETs SLA7021M
s Ratings
Absolute maximum ratings Type No. SLA7020M SLA7021M Motor supply Voltage (V) VCC 46 FET output breakdown voltage (V) VDS 100 Control voltage (V) VS 32 TTL input voltage (V) VIN 7 Reference voltage (V) VREF 2 Output current (A) IO 1.5 3 Power dissipation (W) PD 4.5 (No Fin) Channel temperature (C) Tch 150 Storage temperature (C) Tstg -40 to +150
s Characteristics (1) DC Characteristics
Electrical characteristics Control current (mA)
VS = 30V IS VS max min typ max min
Control voltage (V)
FET turn-on voltage
FET drain leak current (mA)
VDSS = 100V VS = 30V IDSS
TTL input current (A)
VIH = 2.4V VS = 30V IIH
TTL input current (mA)
VIL = 0.4V VS = 30V IIL
(V)
(7020M) ID =1A, VS =14V (7021M) ID =3A, VS =14V VDS typ max
TTL input voltage (OUT) (V)
ID = 1A VIH
TTL input voltage (V)
VDSS = 100V VIL
TTL input voltage (OUT) (V)
VDSS = 100V VIH typ
TTL input voltage (V)
ID = 1A VIL
Type No. SLA7020M SLA7021M
min typ
min typ max min typ max min typ
max min typ max min
typ max min
max min typ max
5.5 10
15
10
19
30
0.6 0.85
4
40
-0.8 2.0
0.8 2.0
0.8
(2) AC Characteristics
Electrical characteristics FET diode forward voltage (V) (7020M) ISD = 1A (7021M) ISD = 3A VSD
min typ max
Switching time (s) VS = 24V ID = 1A Tstg
Tr
Tf
max
Type No. SLA7020M SLA7021M
min typ max min typ max min typ
1.1 2.3
0.5
0.7
0.1
12
SLA7020M and SLA7021M
s Block diagram
Motor main power supply VCC r3/ Auxiliary Excitation power supply signal
Reference voltage Vb r1 R*C for setting chopper OFF time
r4
Motor
r2 r5/r6 R*C for protection against chopping malfunctions C3/C4
C1/C2 Td VS IN Excitation signal transfer circuit OUT OUT
REF
Current peak detector circuit
Chopper OFF time control circuit
Current control and counter EMF canceller circuit
GND
RS Current detection resistor RS
Da/Db
s Internal circuit diagram (enclosed with chain line)
VCC
Vs=10~30V OUTA OUTA OUTB OUTB 15 9 Vb(5V) RSB Db RS + INA VS INB
6
1
5 Reg
8 Reg
14
10
+ -
+ -
+ -
+ -
7 RSA
2 TDA
3 REFA
4 GNDA GNDB
12 REFB
13 TDB
11
RS
Da
C3
r3
C1
r1 r5 r2 r6
r4
C2
C4
13
SLA7020M and SLA7021M
s Diagram of standard external circuit (Recommended circuit constants)
VCC (46V max)
Excitation signal time chart 2-phase excitation
clock INA INB 0 H L 1 H H 2 L H 3 L L 0 H L 1 H H
VS (10~30V)
1-2 phase excitation
VREF (5V) 8 1 VS OUTA 6 10 OUTA OUTB 15 OUTB INA 2 11 C1 C2 TdA TdB 5 INA
clock INA tdA INB tdB 0 H L L L 1 H L L H 2 H L H L 3 H H H L 4 L L H L 5 L L H H 6701 LLHH LHLL LLLL LLLH 2 H L H L 3 H H H L
r3
r4
r1
SLA7020M SLA7021M
GA 4 Db Rs
INB GB 12
14
INB
* tdA and tdB are signals before the inverter stage. r1 r2 r3 r4 r5 r6 C1 C2 C3 C4 510 100 (VR) 47k 47k 2.4k 2.4k 470pF 470pF 2200pF 2200pF 7020M EK03 1 typ 7021M RK34 0.68 typ
r2
Da
RSA REFA REFB RSB 7 3 13 9 C3 Rs C4
Da. Db Rs
r5
r6
Open collector
tdA
tdB
s External dimensions
(Unit: mm)
Epoxy resin package
3.20.15
310.2 24.40.2 16.40.2
3.2 0.15x3.8
4.8 0.2 1.7 0.1
16 0.2
13 0.2
9.9 0.2
6.70.5
R-End 0.65 -0.1
+0.2
9.7 -0.5
+1
1.60.6
1.15 -0.1 14xP2.030.7=28.421.0 31.30.2
+0.2
0.55 -0.1 40.7
+0.2
1.15 -0.1 14xP2.030.4=28.420.8
+0.2
2.20.4 6.30.6 7.50.6
1 2 3 * * * * * * * 15
12 3 * * * * * * * 15
Forming number No. 853
Forming number No. 855
14
0.55 -0.1
(3)
+0.2
0.65 -0.1
+0.2
30.6
2.45 0.2
4.60.6
Type No. Lot No.
SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note
s Determining the output current
Fig. 1 shows the waveform of the output current (motor coil current). The method of determining the peak value (lo) of the output current based on this waveform is shown below. Vb r1, r2 Rs : Reference supply voltage : Voltage-divider resistors for the reference supply voltage : Current detection resistor To determine rx, equation w can be modified to obtain equation e. 1 . .............................. e rx = . 1 1 Vb -1 - r2 r1 Rs*lOPD
(1) Normal rotation mode lo is determined as follows when current flows at the maximum level during motor rotation. See Fig. 2, 3 and 4. Vb r2 . lo = * ................................................... q . r1+r2 Rs (2) Power down mode The circuits in Fig. 5, 6 and 7 (rx and Tr) are added in order to decrease the coil current. lo is then determined as follows. 1 Vb . IOPD = * ....................................... w . r1(r2+rx) Rs 1+ r2*rx
Fig. 3 Circuit for fixing the coil current
Vb(5V) r1
r6 r5 3,(14) C3 9,(10) RS
SLA7024M SLA7026M SLA7027MU
r2
Fig. 1 Waveform of coil current (Phase A excitation ON)
Fig. 4 Circuit for fixing the coil current
Vb(5V)
IO Phase A
r1
r6 r5 SDK03M 3 C3 10 13 15 RS
r2
0 Phase A
Fig. 5 Circuit for fixing the coil current Fig. 2 Circuit for fixing the coil current
Vb(5V)
Vb(5V) r1 r5 r2 C3 3,(13) 7,(9) RS r6 SLA7022MU SLA7029M SMA7022MU SMA7029M SLA7020M SLA7021M
r6 r1 r5 rX Power down signal Tr r2 C3 7,(9) 3,(13)
SLA7022MU SLA7029M SMA7022MU SMA7029M SLA7020M SLA7021M
RS
17
SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note
Fig. 6 Circuit for fixing the coil current Vb(5V) r1 r6 r5 SLA7024M SLA7026M SLA7027MU
Fig. 9 Output current lOPD vs. Variable current resistor rx
SLA7024M, SLA7026M, SLA7029M, SLA7027MU, SLA7022MU, SLA7020M, SLA7021M, SMA7029M, SMA7022MU, SDK03M 2
3,(14)
Power down signal
C3 Tr
Output current IOPD (A)
rX
r2
9,(10)
1.5
RS =0.5
1
RS =0.8 RS =1 1 * Vb r1(r2+rX) RS 1+ r2 * rX r1=510 r2=100 Vb=5V 1000 1200 6.0 8.00 IOPD=
0.5
Fig. 7 Circuit for fixing the coil current
Vb(5V) r6 r1 r5 rX Power down signal Tr RS r2 C3 10 13 15 3 SDK03M
00
2.0
4.0
Variable current resistor rX ()
Fig. 8 and 9 show the graphs of equations q and w , respectively.
Fig. 8 Output current Io vs. Current detection resistor Rs SLA7024M, SLA7026M, SLA7029M, SLA7027MU, SLA7022MU, SLA7020M, SLA7021M, SMA7029M, SMA7022MU, SDK03M
NOTE: Ringing noise is produced in the current detection resistor Rs when the MOSFET is switched ON and OFF through chopping. This noise is also generated in feedback signals from Rs which may therefore causes the comparator to malfunction. To prevent chopping malfunctions, r5(r6) and C3(C4) are added in order to act as noise filter. However, when the values of these constants are increased, the response from Rs to the comparator becomes slow. Hence, the value of the output current lo is higher to some extent than the computed value.
4
Output current IO (A)
3 IO= r2 * Vb r1+r2 RS r1=510 r2=100 rx= Vb=5V
2
1
0
0
1
2
3
4
Current detection resistor RS ()
18
SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note
s Determining the chopper frequency
Determining TOFF: SLA7000M series, SMA7000M series and SDK03M are self-excited choppers. The chopping OFF time TOFF is fixed by r3/C1 and r4/C2 connected to terminal Td. TOFF can be computed through the following formula: 2 2 . TOFF = -r3*C1Rn(1- ) = -r4*C2Rn(1- ) . Vb Vb The circuit constants and the TOFF value shown below are recommended. TOFF r3 C1 Vb = = = = 12 s 47 K 500 pF 5V
Fig. 10 Chopper frequency vs. Motor coil resistance
60 50
47k r4 500PF C1 = C2 = TOFF =12s RS =1 Lm =1~3ms Rm 4V =2 C VC V =36 VCC
r3
40 30 20 10 0 0 2
20 25 30 35 40
4 6 8 10 12 14 Motor coil resistance Rm ()
16
s Thermal design
An outline on the method of computing heat dissipation is shown below. (1) Obtain the PH that corresponds to the motor coil current IO from Fig. 11 "Heat dissipation per phase PH vs. Output current lo".
Heat dissipation per phase PH (W)
(2) The power dissipation Pdiss is obtained through the following formula. * SLA7000M and SMA7000M series . 2-phase excitation : Pdiss = 2PH + 0.015 x Vs (W) . .3 1-2 phase excitation : Pdiss = PH + 0.015 x Vs (W) . 2 * SDK03M 2-phase excitation . : Pdiss = PH + 0.015 x Vs (W) . .3 1-2 phase excitation : Pdiss = PH + 0.015 x Vs (W) . 4
4.0 3.0 2.0 1.0
SLA7026M and SLA7021M
Typ. Motor : 23PM-C503 Rm=1.16 / Lm=2.9mA/ Holding mode
=4
4V
VC
15 24 V
V
36
0 0
(3) Obtain the temperature rise that corresponds to the computed Pdiss from Fig. 12 "Temperature rise curve."
Fig. 11 Heat dissipation per phase PH vs. Output current lo
1.0 2.0 Output current IO (A)
C
V
3.0
SLA7022MU, SLA7027MU, SMA7022MU and SDK03M
Heat dissipation per phase PH (W)
1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1
Heat dissipation per phase PH (W)
1.2 1.0 0.8 0.6 0.4 0.2 0
SLA7024M, SLA7029M, SMA7029M and SLA7020M
Typ. Motor : 23LM-C004 Holding mode
VCC =44 V
Typ. Motor : 23LM-C202 Holding mode
VCC V =44 V 36 V 24
15 V
36V 15V
24V
0
0.2
0.4 0.6 Output current IO (A)
0.8
1.0
Output current IO (A)
Chopping frequency (KHz)
15
ON time TON (s)
19
SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note
Fig. 12 Temperature rise curve Comparison of losses
8
150
SLA7000M series
7
Power dissipation PH (W)
Natural cooling Without heatsink
Tj-a TC-a (C)
100
T
j
6 5
Sanken product : SI-7300A
T
C
4 3
IO=1A
Motor : 23LM-C202 IO : Output current 2-phase excitation, holding mode
50
0
2 SLA7024M, SLA7029M,
SMA7029M and SLA7020M
0
1
2 3 Total power (W)
4
5
IO=1A
1 0 0 10 20 30 40 50
150 SMA7000M series Natural cooling Without heatsink 100
Tj-a (C) TC-a
Supply voltage VCC (V)
T
j
T
C
50
0
0
1
2 Total power (W)
3
4
150
SDK03M
100 Tj-a (C) TC-a
T
C T
50
Glass epoxy board (mounted on level surface) (95x69x1.2mm) Natural cooling
0
0
1 2 Total power (W)
j
3
20
SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note
Heat dissipation characteristics
30 SLA7024M, SLA7029M and SLA7020M
SLA7026M and SLA7021M
Case temperature rise TC-a (C)
25 20 15 10 5 0 200
Case temperature rise TC-a (C)
50
40
30
Motor : PH265-01B (Rm=7 / , Lm=9mH/ ) Motor current IO=0.8A Ta=25C VCC=24V, VS=24V 2-phase excitation
500
Without heatsink Natural cooling
20
Without heatsink Natural cooling Motor : 23PM-C705 (Rm=1.27 / , Lm=1.8mH/ ) VCC=24V, VS=24V, IO=1.5A TC ( 4 pin) 2-phase excitation
500 1K 5K
10
TC ( 4 pin)
1K 2K
0 100
Response frequency (pps)
Response frequency (pps)
35 SLA7022MU and SLA7027MU
35 SMA7022MU
Case temperature rise TC-a (C)
30 25 20 15 10 5 0 200
Case temperature rise TC-a (C)
30 25 20 15 10 5 0 200
Motor : PH265-01B (Rm=7 / , Lm=9mH/ ) Motor current IO=0.8A Ta=25C VCC=24V, VS=24V 2-phase excitation
500
Without heatsink Natural cooling
TC ( 4 pin)
1K 2K
Motor : PH265-01B (Rm=7 / , Lm=9mH/ ) Motor current IO=0.8A Ta=25C VCC=24V, VS=24V 2-phase excitation
500
Without heatsink Natural cooling
TC ( 4 pin)
1K 2K
Response frequency (pps)
Response frequency (pps)
30 SMA7029M
50
SDK03M
Case temperature rise TC-a (C)
25 20 15 10 5 0 200
Case temperature rise TC-a (C)
40
30
Motor : PH265-01B (Rm=7 / , Lm=9mH/ ) Motor current IO=0.8A Ta=25C VCC=24V, VS=24V 2-phase excitation
500
Without heatsink Natural cooling
20
10
TC ( 4 pin)
1K 2K
Natural cooling Glass epoxy board (mounted on level surface) (95x69x1.2mm) Motor : PH265-01B (Rm=7 / , Lm=9mH/ ) Motor current IO=0.8A Ta=25C VCC=24V, VS=24V 2-phase excitation
0 200
TC ( 9 pin)
1K 2K
500
Response frequency (pps)
Response frequency (pps)
21
SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note
Supply voltage Vcc vs. Supply current Icc Torque characteristics
SLA7024M, SLA7029M, SMA7029M and SLA7020M
500 2.0
SLA7024M, SLA7029M, SMA7029M and SLA7020M
Motor : 23LM-C202 (1V/1.1A) Output current IO =0.8A Motor supply voltage VCC =24V 2-phase excitation
Supply current ICC (mA)
400
Pull-out torque (kg-cm)
Motor : 23LM-C004 (6V/1.2A) 1-phase excitation Holding mode Chopper period T = 47 s IO : Output current
1.5
300
1.0
200
IO=1A
0.5
100
IO=0.5A IO=0.2A
0 0 10 20 30 40 50 0 100 500 1k 2k 3k 4k 5k
Supply voltage VCC (V)
Response frequency (pps)
SLA7026M and SLA7021M
6.0 1.5
SLA7026M and SLA7021M
Pull-out torque (kg-cm)
Supply current ICC (A)
Motor : 23PM-C503 Rm=1.16/ Lm=2.9mH/ 1-phase excitation, holding mode IO : Output current
5.0 4.0 3.0 2.0 1.0 0 100
1.0
0.5
IO=3A IO=2A IO=1A
Motor : 23PM-C705 Rm=1.27/ Lm=1.8mH/ VCC =24V IO =2.5A 2-phase excitation
500 1k 3k 5k 10k
0
0
10
20
30
40
50
Supply voltage VCC (V)
Response frequency (pps) SLA7027MU, SLA7022MU, SMA7022MU and SDK03M
2.0
SLA7022MU, SLA7027MU, SMA7022MU and SDK03M
500
Supply current ICC (mA)
400
Pull-out torque (kg-cm)
Motor : 23LM-C202 (4V/1A) 1-phase excitation, holding mode IO : Output current
Motor : PX244-02 Output current IO =0.6A Motor supply voltage VCC =24V 2-phase excitation
1.5
300
200
1.0
IO=1A
100
0.4A 0.2A
0 10 20 30 40 50
0.5
0
0 100
500
1k
2k 3k
5k
10k
Supply voltage VCC (V)
Response frequency (pps)
22
SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M, SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M Application Note
Chopper frequency vs. Supply voltage
50
Chopper frequency vs. Output current
50
40
40
30
30
f (kHz)
20
f (kHz)
20
10
Motor : 23LM-C202 (1V/1.1A) IO = 0.8A at VCC=24V RS=1
10
Motor : 23LM-C202 (1V/1.1A) VCC=24V RS=1
0
0
10
20
30
40
50
0
0
0.2
0.4
0.6
0.8
1.0
VCC (V)
IO (A)
s NOTE
Either active high or active low excitation input signals can be used for SLA7024M, SLA7026M, SLA7027MU and SDK03M. However, take note of the output that corresponds to a specified input as shown in the table below. * SLA7024M, SLA7026M and SLA7027MU Active High Input INA (6 pin) INA (5 pin) INB (17 pin) INB (16 pin) * SDK03M Active High Input IN1 (6 pin) IN2 (5 pin) Output OUT1 (1, 16 pin) OUT2 (8, 9 pin) Active Low Input IN1 (6 pin) IN2 (5 pin) Output OUT1 (8, 9 pin) OUT2 (1, 16 pin) Output OUTA (1 pin) OUTA (8 pin) OUTB (11 pin) OUTB (18 pin) Active Low Input INA (6 pin) INA (5 pin) INB (17 pin) INB (16 pin) Output OUTA (8 pin) OUTA (1 pin) OUTB (18 pin) OUTB (11 pin)
23


▲Up To Search▲   

 
Price & Availability of SLA7020

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X